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The author characterizes accurately in his foreword the predominant measurement 
doctrines found in the philosophy of science. He writes that in a very extensive 
literature „on the practice and theory of measurement and scaling, two one-sided 
methodological positions are strongly exhibited: on the one hand, the position 
influenced by instrumentalism, operationalism and neopositivism; on the other hand, 
the viewpoint based on the formalistic philosophy of mathematics. From a purely 
empirical point of view, measurement is reduced only to the use of different scaling and 
measuring techniques. A purely mathematical doctrine of measurement, which prevails 
today, is reduced to the construction of various scales of measurement, defined merely 
by purely formally invariant transformations under which their form is unchanged, or, 
alternatively, to the derivation of the representation and uniqueness theorems from 
axiomatically defined relational structures. A common denominator of both these 
antagonistic doctrines is a very broad explication of the concept of measurement, 
encompassing a mere numbering, as well as an uncritical application of measuring 
procedures to the widest possible extent" (XI). 

                                                           
1 Überarbeitete Rezension von: Karel Berka: Measurement. Its Concepts, Theorie and Problems  (1983). 
Zeitschrift für allgemeine Wissenschaftstheorie XV/2 (1984), p. 354-363. 

Based on his extensive studies in the theory of measurement, Berka attempts "to 
analyze the problems of measurement scales on the basis of the methodological 
principles of dialectical and historical materialism" (XI), that is, we have to prepare 
ourselves for a fight with concepts. 

And, indeed, Berka's work consists of a jumble of concepts having only a loose 
relation to each other; a brief glance at the table of contents will confirm this view: (1) 
INTRODUCTION, (2) MEASUREMENT (explication and definition of the concept of 
measurement; subject matter, function and scope of measurement), (3) MAGNITUDES 
(quantities, magnitudes, numbers: a historical excursion; quantities and magnitudes; 
object of measurement; measurement units, naming and dimension; classification of 
magnitudes), (4) SCALES (concept of scale; origin of scale; distance), (5) 
QUANTIFICATION (scaling; counting), (6) THEORY OF MEASUREMENT 
(representation theories of measurement; kinds of measurement; metrization; 
representation theorem), (7) THEORY OF SCALES (classification of scale types; scale 
transformations and the uniqueness theorem), (8) METHODOLOGICAL PROBLEMS 
OF MEASUREMENT (axiomatization of the systems of measurement; empirical 
relations and operations; precision of measurement; meaningfulness, validity and 
reliability), (9) PHILOSOPHICAL PROBLEMS OF MEASUREMENT (materialist 
foundations of measurement; possibilities and limits of measurement). An extensive 
bibliography, an index of personal names and a subject index are added. 

The reader will notice here that before coming to a theory of measurement, Berka 
performs a detailed explication of various concepts. But where could the basis be for 
explaining, say, 'measurability', if not within a theory of measurement itself? It seems 
to be a quite questionable undertaking to attempt a meaningful explanation of 
concepts outside their theory. Thus, 'temperature' or 'pressure' for example, get an 
instructive interpretation only within the theory of heat. But Berka regards the theory 
of measurement as a concept which had to be explained in the same fashion as 
'magnitude' or 'scale': 
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"One can speak of a theory of measurement in various connections. This situation is 
caused not only by our peculiar ways of interpreting the concept of measurement ... , 
but also by our intentions concerning the extent of the theory ... After all, we might 
consider a general theory of measurement, specific theories of measurement (in 
particular, those of physical and extra-physical measurements), and theories of a 
certain kind of measurement, for example, fundamental measurement, which may 
eventually be specified with respect to a definite scientific discipline. Furthermore, we 
might consider a theory of measurement of some metrical magnitudes ..., a theory of 
measurement procedures on a general level, or only a theory of measurement 
procedures that are either applied in measuring one magnitude or used with the aim of 
attaining a certain interval of scale values. When we constitute a theory of 
measurement ..., we may emphasize conceptual, methodological, and operational 
aspects of measurement, its empirical and mathematical characteristics, or we may 
consciously concentrate only on an analysis of some of these. These possible approaches 
are, of course, always influenced by general methodological connections and 
philosophical views and, thus, must lead to distinct, sometimes even quite contra-
dictory, results, in spite of all the agreement on the choice of the themes" (p. 112). 

A more systematic representation of the subject matter may be reached in the context 
of a theory. Berka, however, showers his reader with a flood of concepts. Taking into 
consideration all positions and aspects, he leaves the reader very often unclear what is 
important and what is not. In many cases, it would be a great help for the reader if the 
author would clearly define his concepts before discussing someone else's positions. 

If Berka would try to explain the concept 'house', for instance, he would proceed in 
the following dialectical way: 'One can speak of a house in various connections. For a 
physicist, a house is an ordered load of bricks ; the owner of a house may regard it as 
his castle; from the standpoint of a tax officer, a house is a tax object; and so on'. Of 
course, these claims are not false; rather, they are irrelevant, and, even more, they are 
misleading if associated with an analysis of concepts, because they characterize different 
points of view, but not the concept itself. 

Throughout the book we find so-called 'there-is-not' assertions which are known to 
be unproveable: there are no measurement units for non-metrical magnitudes (p. 95, 
109) ; "an area or a volume cannot be measured without a prior measurement of 
length" (p. 119); "in the case of extraphysical measurement, we do not have at our 

disposal an objectively reproducible and significantly interpretable measurement unit" 
(p. 211); some properties of real objects are not measurable in principle (p. 215). 
Berka, as a logician, should normally be aware of the problematic property inherent in 
such assertions, especially then, if they have the character of natural law. 

In his introduction, Berka points out that, although measurement is a quite common 
procedure in the everyday practice, one should not overlook all the necessary empirical 
and theoretical presuppositions which facilitated the construction and employment of 
the measuring devices (p. 1ff). He gives a brief overview about some measuring 
problems and introduces classificational, topological and metrical concepts: 

"Classificational concepts, such as close, cold, long, old, which are determined only 
in a qualitative sense, serve the classification of objects on the basis of common 
characteristics" (p. 5). Topological concepts, such as warmer than, longer than, 
"enable us, not only to establish the sameness (or difference), but also to mutually 
compare at least two objects which possess a given property and, consequently, to 
arrange them into a sequence" (p. 6). Metrical concepts, such as '50° C warm', '10m 
long', "not only express a qualitative characteristic, for example, length, temperature, 
etc., but already give exact quantitative specifications" (p. 7.) These three concepts – 
classificational, topological and metrical – occur throughout the book in a variety of 
different, and therefore misleading, denotations. 

The second chapter deals with the concept "measurement'. "An adequate definition 
of the concept of measurement ... cannot be regarded as the only aim of our analysis. It 
is much more important for the theory of measurement if we expound what can be 
meaningfully said about measurement from various standpoints : if we state what are 
the general and specific characteristics helping us to grasp the core of the method, what 
its role is in the process of scientific knowledge, under what conditions measure-ment 
can be legitimately applied, and what indeed measurement is objectively" (p. 14). It is 
quite obvious "that measurement encompasses different aspects and components of an 
empirical and theoretical nature, which are mutually conditioned in a very complicated 
way. In practice, the implementation of the process of measurement appears at the 
foreground and contains the following: the preparation and performance of 
experiments employing measurements within a certain scientific area; the choice of 
suitable measuring operations; the construction and use of measuring instruments; and 
the elaboration and evaluation of the results of a measurement. On a theoretical level, 
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the relevant problems contain, in particular, a conceptualization of the object of 
measurement and of its results; a demarcation of basic concepts of the theory of 
measurement and of the conditions of measurability; the elucidation of the relationship 
between the empirical and mathematical aspects of measurement; and the constitution 
of a general theory of measurement" (p. 14f). 

An explication of the concept 'measurement' is given by comparing physical with 
extra-physical measurement. "In spite of considerable divergencies, they agree in 
characterizing the process of measurement by means of three basic components: the 
object of measurement, the results of measurement, and certain mediating empirical 
operations" (p. 19). 

After discussing some historical positions, Berka introduces the representational 
definition of measurement. In this theory, measurement is "understood as a 
homomorphic mapping of a certain empirical relational system (empirical structure) 
onto some numerical relational system (numerical structure)" (p. 25). An empirical 
(numerical) relational system is defined as an ordered pair consisting of a set of 
empirical (numerical) objects, and a set of empirical relations. 

Berka supports a moderate representational doctrine: "The point of departure for 
every measurement is the knowledge of objectively existing relations between the ob-
jects and phenomena of objective reality. On the basis of this knowledge we then start 
to look for a certain numerical expression. At this initial stage, the mapping of an em-
pirical relational system onto a numerical relational system is a homomorphism based 
only on the correspondence between empirical and numerical objects, between empiri-
cal and numerical relations. However, since the numerical relational system is also de-
fined by operations with numbers, in the second stage we proceed in the reverse order. 
We strive to find suitable empirical counterparts to these numerical operations - coun-
terparts susceptible of meaningful interpretations. If we succeed in finding empirical 
operations that have properties structurally analogical with the properties of numeri-
cal operations, then we can talk about a homomorphic mapping ... in the strict sense" 
(p. 27). 

One of the fundamental epistemological questions in the theory of measurement is: 
how to bring an information content into a formal system? The representationalist, as 
well as Berka's, answer: by means of structure equality. But how to achieve it? The 

representationalist will answer: by proving the so-called representation theorem, 
whereas Berka answers: by finding suitable empirical counterparts which are 
susceptible of meaningful interpretations. What is the difference between these two 
positions? It seems that a clear definition of 'suitable' and 'meaningful interpretation' 
would lead directly to the prove of a representation theorem, again. In fact, Berka's 
criticism of the representational position is quite justified (see also p. 153), but no 
improvement is reached by introducing ambiguous concepts. 

After a brief historical excursion about quantities, magnitudes and numbers, Berka 
strives to give in the third chapter a clarification of these concepts: "Quantity is 
understood as anything that can be numerically mapped in some way: every 
quantifiable - countable or measurable - property. Under a quality one understands 
those properties, or perhaps relations and the like, which are not measurable" (p. 43). 

Thus, quality depends on the quite controversial concept of measurability; its 
meaning can only be determined within the framework of a theory of measurement; on 
the other hand, however, in a theory of measurement one has to make use of the 
concept 'quality' in one or another way. The above definition gives a quite circular 
impression, moreover, the concept of quality is characterized by a problematic 'there-
is-not' assertion. 

Berka discusses diverse philosophical positions concerning quality, quantity and 
magnitude. But in spite of reading this section repeatedly, no clearness about the 
meaning of the basic concepts could be reached. "Either magnitudes are more abstract 
than quantities or, on the contrary, quantities are more abstract than magnitudes." 
"From the methodological standpoint, both these conceptions, irrespective of the way 
they define the relationship between quantities and magnitudes, are entirely 
congruent." "In the first case, quantity is a particular, concrete instance of a 
magnitude. For example, the length of a rod ... in meters, is a quantity, while length is 
a magnitude" (p. 45). 

In the first case, quantity is a mixture of what in the sciences is called 'intensity', 'true 
value', or 'measured value', while magnitude denotes the German 'Messgröße'. These 
concepts stand for totally different things so that it can hardly be true that the one 
would be more abstract than the other. 
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As long as no measurement procedure is known, one should speak unspecifically of 
properties. No sharp distinction is made between 'property' and 'magnitude'. Thus, 
length, voltage, temperature, resistance are strictly speaking examples of magnitudes, 
but they may also denote the corresponding properties. Very important is the 
differentiation among intensity, true value, and measured value. The intensity (of a 
magnitude of a certain measuring object) denotes an empirical size; its numerical 
counterpart is the so-called true value; and the result of a measurement is denoted as 
measured value (Messwert). 'True value' represents a terminus technicus in the theory 
of errors with respect to statistics. Therefore, the term 'true' should not trigger an 
unacquainted philosophical discussion. With this concept, the idea is associated that an 
(empirical) intensity must have a certain numerical amount. All natural laws maintain 
relations between true values, although, in general, these true values cannot be 
determined: only in case of a measuring error equal to zero, is the true value known, 
because then the true value is identical with the measured one. 

According to the translator's note, 'magnitude' has to be interpreted as the German 
'Messgröße' and 'size' or 'size of magnitudes' as 'intensity' or 'true value' (IX). Having in 
mind this note, it is incomprehensible what the phrases 'size (magnitude)' (pp. 43, 45, 
46), or 'magnitude (size)' (p. 48), or 'measured magnitudes' (p. 85) should mean. The 
ambiguity of Berka's concepts are also revealed in the phrases 'properties as 
magnitudes', 'kind of magnitude' (p. 48), 'magnitude of length' (p. 49) and in his 
distinction between "the type of magnitude (for example, length); kinds of magnitudes 
(for example, distance, height, depth, breath); its specifications (for example, 
wavelength); or its concrete instances (for example length of my writing desk)" (p. 
52). Only 'type of the magnitude' (Messgröße) has a scientific meaning. Kinds of 
magnitudes are irrelevant, because height, depth, etc., are not real properties of the 
things, rather concepts devised by human beings for their description. One does not 
change the kind of magnitude by turning the rod from the horizontal to the 
perpendicular direction. Finally, the concrete instances can be interpreted again in the 
threefold way as intensities, true values or measured values. 

Based on these mixtures, Berka gives a quite confused interpretation of the 
magnitude's dimension: "It follows from the characteristics of magnitude as functions 
with empirical arguments and numerical values, that every magnitude can be expressed 
by some named number. Naming refers to the empirical variables that characterize the 
qualitative component of magnitudes, while numbers represent their quantitative 

determinations". "The nominal component of a metrical magnitude, represented by 
named cardinal numbers, is identified with so-called dimension ..., while the numerical 
component is interpreted as a set of multiples or portions of the measurement unit" (p. 
55). "Therefore, it is not correct when any magnitude X in physics is generally 
expressed as a product of a numerical value {X } and a measurement unit [X ] accor-
ding to the relation X = {X } ⋅ [X ]" (p. 57). In no way could one consider this expres-
sion as a definition "of the concept of magnitude, or of the value of a magnitude, which 
would contain in the definiens the numerical operation of multiplying the measure-
ment number and the measurement unit" (p. 58). Berka overlooks here the facts (1) 
that the magnitude X  defined in the equation above is a measured value, and (2) that 
the unit is a numerical value too, since it denotes a special intensity embodied by a 
material standard. Thus, 5m means that the length of the measuring object is five times 
the length, say, of the standard rod in Sèvres. If we now change the unit to cm, then we 
have m = 100 cm, and {5} ⋅ [100 cm] ≠ 500 cm, because, following Berka, no 
multiplication is allowed. 

In a final section, Berka gives a classification of magnitudes. There are "discrete, 
metrical and non-metrical, physical and extraphysical, fundamental and derived, 
dimensional and dimensionless, scalar and vector magnitudes, and the like. We might 
still complement this by a further division of magnitudes, for instance, into extensive 
and non-extensive, additive and non-additive, primary and secondary" (p. 73). This 
variety of concepts still increases because most of the attributes are applied for the 
concept 'measurement', too, as for example, 'derived measurement' (p. 115). We will 
discuss this confusion of concepts later. 

Chapter four deals with the concept 'scale' which is used with manifold meanings in 
the literature. Berka distinguishes between conceptual and material scales: "A 
conceptual scale, in short a scale, is characterized by a certain ordered interval of 
numerical values, the so-called scale values, which can be theoretically assigned to the 
measured magnitudes" (p. 85). 

"A material scale, in short a gauge, is determined by an ordered set of marks on the 
measuring instrument, and in most cases by a set of numerals the reading of which 
enables us to assign numerical values to the size of the measured magnitudes." 
"Material scales are characterized by numerals, whereas in the case of conceptual scales 
we deal only with numbers" (p. 85). 
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Under the concept of quantification (chap. 5), Berka understands "a transition from 
classificational concepts to metrical concepts, or any other procedure by means of 
which empirical variables are associated with numerical variables", for example the 
operation of counting (p. 101). He discriminates between three different levels of 
quantification: numbering (numerical designation), ordering (scaling) and 
measurement (pp. 101, 104). Note the arbitrary use of the concept 'measurement' here, 
which is neither in accordance with his own definition nor common in scientific 
research. 

In his theory of measurement (chap. 6), Berka discriminates between 'topologization' 
and 'metrization'. Topologization is defined by two binary relations K and P. These 
relations might be generally interpreted as coincidence  and precedence; they are 
characterized by the axioms of equivalence (K ) and (weak) ordering (P ) (pp. 135ff), 
respectively. The mapping from the empirical relational system (E, K, P) onto a 
numerical relational system (N, =, <) might be expressed by correspondence rules 
which bring into correlation empirical and numerical characteristics of both relational 
systems (p. 134, 138). Metrization is the extension of topologization by adding the 
operation of addition (p. 140). 

But there remains the important question, under what assumptions it is proper to 
talk about a homomorphic mapping? Berka answers: we have to find suitable empirical 
counterparts to numerical operations (pp. 27, 124, 134, 183). Why do we not have to 
find suitable numerical counterparts to empirical operations? By what right are we 
justified to prescribe the nature the formal properties it should have? Such a 
requirement seems like the prophet who ordered the mountain to come to him. Cannot 
the search for a suitable empirical counterpart be a search for a perpetuum mobile? By 
what right are we justified to assume that the set of numerical objects must be 
numbers? Why not, for example, a set of functions? 

We get the answer to these questions from the fundamental fact that in physics an 
intensity is measured by comparing it with another intensity. The procedure of 
comparing two intensities involves all essential characteristics of measurement. From 
this really basic understanding the complete theory of measurement can be developed, 
so that it might be considered as its basic axiom. 

During the measurement procedure, a transmission of the intensity under study to a 
measurable intensity must occur. This process represents a mapping in the empirical 
domain. The measured value, which is read off from the measuring device, belongs 
always to the latter intensity. We need, therefore, a so-called measure function 
allowing the conversion from the measured value into the corresponding value of the 
intensity under study. It should be noted that for determining a length by means of a 
measuring rod, such an empirical mapping also takes place physically, if the rod is 
positioned next to the measuring object. In this simple case, the measure function has 
the trivial form y = 1⋅x, and the computation of y is correspondingly trivial. 
Nevertheless, it is a computation, as can be seen more obviously by changing the unit 
so that the factor one before x has to be change, for example, in the factor 100. That is, 
in physics there are only indirect measurement procedures, in contradiction to Berka's 
view: "Direct measurement is based on an immediate comparison of the measured 
object with some standard object (measuring device) or with the scale of the measuring 
instrument. Indirect measurement includes a direct measurement of something else, of 
the same or other magnitudes, as well as calculations carried out on the basis of 
geometrical, physical, and other laws" (p. 130f). 

Because the mapping in the empirical domain is a process going on in reality, the 
measure function, which is its description, is a natural law. Thus, the underlying law of 
the spring balance is y = m x, where x is a length, y the weight searched for, and m is a 
material constant depending on the special properties of the spring used. In this 
example, the weight is measured by means of a length. Other examples are the 
measurement of the temperature by means of the thermal cell (or mercury or gas 
thermometer), of the time duration by means of a clock, of the distance by sonar or 
radar, of the altitude by a barometer and so on. In Hempels's language (p. 129) we 
would have to say that in physics there are only derived measurements by means of law. 

"Why physical laws are indeed invariant as to the size of the measurement units of 
magnitudes that are involved in them" (p. 72)? The question is left unanswered by 
Berka, but the answer is very simple: because each measurement procedure is based on a 
natural law. Berka has overlooked this important fact. For him, "measurement makes 
sense only if it produces a basis for a formulation of numerical laws" (p. 214); metrical 
concepts "enable us to formulate numerical laws" (p. 7, see also p. 72). 
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On the contrary, only the knowledge of a law enables us to perform a measurement 
at all. Therefore, any mapping from an empirical onto a numerical relational system 
has to be performed on the basis of empirical processes  and numerical functions. This 
can be seen very clearly if we look at the description of a measured value. We do not 
say, e.g., the length l  of an object is 5, rather, 1 = 5 m, that is, the length of the object 
is 5 times the length of a certain standard object. There is a widespread 
misunderstanding in the philosophy of measurement that the correspondence has to 
take place on the level of empirical objects and numbers. But such a correspondence 
may be secondarily the consequence of comparing processes and functions. 

Berka (and his predecessors) did not understand these quite elementary facts. Thus, 
he is forced to construct arbitrary interpretations, which is, quite annoying, with 
regard to physics, especially in his lengthy discussions on dimensions (pp. 55-73) and 
the kinds of magnitudes (pp. 73-82 and 115-133). What we need is not "some 
taxonomy of magnitudes" (p. 73), but a drastic diminution of its variety. 

According to the measuring principle in physics, it is not meaningful to speak about 
fundamental and derived magnitudes, because 'fundamental' and 'derived' do not occur 
as a physical properties, rather, they are conceptual aids. If we subdivide fish in net-fish 
and fishing-rod-fish depending on whether they are caught by a net or by a fishing rod, 
we have to take into account that some sorts of fish will fall into both classes. Thus, we 
should not be surprised if we find that physical magnitudes are found to be 
fundamental as well as derived (pp. 80, 130, 167). 

If we understand 'metrization' as the search for the measure function, then we can 
meaningfully subdivide it in 'fundamental' and 'derived'. The measuring principle 
presupposes that, at least for one intensity, a measure function must be known a priori. 
This will happen only for properties having an intensity which can be mapped 
according to the function y = x, and, indeed, we are justified here to speak about 
'fundamental'. 

"A common example of a derived measurement is the measurement of density. In this 
case we establish numerical values of the density of ... bodies by calculation, on the 
basis of their volume and mass, without having to perform any empirical operations" 
(p. 19). However, if we use a constant volume, then we again get the familiar measure 
function D = a m. 

Although many magnitudes can be measured "fundamentally as well as derivatively, 
it is nonetheless incompatible with the theoretical construction of physics in which this 
classification is still applied. Such relativization is also in conflict with the fact that the 
discernment of fundamental and derived magnitudes has, at any rate, a principal 
significance for the construction of coherent systems of measurement units" (p. 76). 

This is an untenable position. Berka has forgotten here his correspondence rules. 
Because of these rules, the difference between empirical and numerical characteristics is 
repealed, that is, each magnitude (not only "many") must be measurable, both 
fundamentally as well as derivatively. Otherwise, the one-to-one correspondence stated 
in these rules would be violated. The fact that computation and measurement can be 
exchanged characterizes physics as an empirical theory. 

In the theory of scales (chap. 7), Berka introduces the familiar nominal, ordinal, 
interval, and ratio scales, which are characterized according to their transformation 
function f, where x' = f (x) (p. 158-161). Berka gives no clear definition of a scale 
transformation, nor does he explain what x' and x really mean. If we measure an 
intensity y by means of an intensity x using the measure function, say, y = a x, then 
nothing can be said about the property of y, unless that of x is known. Scale 
transformations can be interpreted, therefore, as a change of the measurement 
procedure, either with respect to magnitude x, or with respect to magnitude y. In the 
latter case, y is measured by means of a new magnitude, say x', causing a new measure 
function, in general. Hence, the transformation property is characterized by the 
applied measurement procedure, but not by the magnitude itself. 

The discussion of the methodological and philosophical problems of measurement 
(chap. 8 and 9) are shadowed by Berka's misunderstanding of the measuring principle. 
We pick up only two points from it, the discussion about rational and irrational 
values, and the question of measurability in the so-called extraphysical sciences. 

The confusion between true and measured value is very common and manifests itself 
in causing grotesque philosophical problems. "Let us imagine that we have at our 
disposal a certain body which has the shape of a right-angled isosceles triangle with the 
sides a = b = 1 m, and that we have to measure the length of its hypothenuse c". Using 
the Pythagorean theorem, we get the irrational number c = 2 . Thus the length of c 
cannot be measured by pure operational procedures (pp. 4, 122). However, "if we 
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combine, for instance, a fundamental measurement of length with a derived 
measurement on the basis of the laws of Euclidian geometry, we obtain irrational 
values, too" (p. 130). 

Note that irrational numbers can never be 'measured' by calculations. It is quite 
incorrect to identify fundamental measurements with rational and derived ones with 
real numbers (p. 193). There is no "conflict between empirically measurable values of 
magnitudes and their numerical values" (p. 121, 196), and it is not true that in 
practical and theoretical relevant "cases, indirect measurements prevail, for one cannot 
measure directly the irrational values of magnitudes" (p. 131). The geometrical as well 
as physical laws are related to the true values. They may but must not be thought of as 
real numbers. Real numbers are not "of necessity used in the formulation of numerical 
laws", it is not true that "any theoretically discipline is inconceivable" without them 
(p. 121). Similar to the concept of true values, Berka introduces so-called actual values 
(p. 195), but without drawing clear consequences from their state. 

The discussion about measurability is closely connected with measurements in 
extraphysical sciences. In physics, a property is assumed to be measurable, if either a 
fundamental metrization could be performed, or if at least one measure function has 
been found as a bridge to an already measurable magnitude. Otherwise, no assertion 
about its measurability can be made. What could be the reason not to be measurable? 
Either: (1) the property has no connection to any other property; or (2) there exists no 
measure function. Case (1) could happen, in fact, but such property would not be 
observable, because observability implies the ability to come in contact with another 
object. Case (2) could occur if the measurement system does not reach a stable state. To 
what extend is it allowed to transfer this conception to measurements in the social 
sciences? More precisely, does the physical measuring principle hold in the social 
sciences, too? We answer this question in affirmative, whereas Berka seems to deny it 
(pp. 15-19, 214, 216), although no clear justification can be found from him. Without 
any knowledge of the history of physics, Berka maintains that, in contrast to the social 
sciences, in physics the "situation was facilitated by the existence of the objective 
conditions of the applicability of quantitative methods". "Physicists did not feel the 
need to be preoccupied with the methodological questions of experiments, since they 
had not encountered serious obstacles in this respect" (p. 11). 

Again, the fact is of crucial importance that measurement presupposes the knowledge 
of a law. If such a law between two magnitudes has been established erroneously, then 
it may happen "that a certain intelligence test ... will not refer to intelligence but to 
memory" (p. 203). On the other hand, each correct law opens the possibility for a 
meaningful measurement in whatever discipline. Berka did not understand these 
fundamental relationships of the measurement procedure: "The transition from 
classificational to metrical concepts, which on the theoretical level expresses the 
measurability of the respective property, must be carefully distinguished from a more 
or less successful attempt to provide a quantitative explication of a certain qualitative 
concept. To give an illustration of this manner of conceptual elucidation, we may 
mention the exemplification of a certain qualitative concept by means of numerical 
data; for example, the explication of the concept of a successful theatrical production 
by the number of reruns, or the discovery of a suitable correlation between qualitative 
and quantifiable concepts which have a different content, for instance, between the 
concepts of fear and the adrenalin level in blood" (7 f). 

Moreover, purely theoretical quantities like 'accuracy', 'precision', 'reliability' and so 
on, require likewise a measure; otherwise they will lead to meaningless assertions like 
"classificational concepts are inexact and indeterminate" (p. 5), or "it is obvious that 
real numbers offer more precise information than do the whole numbers" (p. 193). 

Reviewing the literature on the theory of measurement published in the last decades, 
one can notice a prevalence of logicians and mathematicians amongst the authors, e.g., 
Carnap, Hempel, von Neumann, Suppes, Krantz, Pfanzagl, and now, as temporarily 
the last one in this number, Berka. And, in continuing the tradition, Berka documents 
with his book that he has never seen a laboratory from inside. Measurement is neither a 
logical, nor a mathematical, nor a philosophical activity. What is the reason that just 
those people feel an urge to write on measurement who do not have any practical 
experience in this area? 
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